Ice Sheets, Sea Ice and Satellites Transforming Polar Paradigms

Waleed Abdalati
Director, Earth Science and Observation Center
University of Colorado, Boulder, CO

Acknowledgements

- The Cryospheric Science Community
- Colleagues at NASA HQ
- NASA Public Affairs and the Scientific Visualization Studio
- Everyone who had the wisdom, foresight perseverance to make the Earth Observing System a reality
- Everyone who is working to enable the next generation Earth Observing Program

"The pictures provide clear evidence that the earth is in grave danger as a result of human activity."

"Major help in studying the earth's environment is expected to emerge from a project being planned by the National Aeronautics and Space Administration. Called Mission to Planet Earth..."

"Mission to Planet Earth would go a long way toward answering critics who have insisted that the U.S. space program has for years had no clear mission."

> Time Magazine, June 5, 1989

"Man must rise above the Earth - to the top of the atmosphere and beyond - for only thus will he fully understand the world in which he lives."

Socrates, ca 400 BC

What is at Risk with a 1-meter Sea Level Rise

Past Sea Level Rise

- Last 14 years: ~3.5 mm/yr
- Last Century: ~1.8 mm/yr
- Historic evidence suggests past rates of 50 mm/yr
 - Associated with ice loss

How Does and Ice Sheet Grow and Shrink?

Warming temperatures increase melt, flow, AND Precipitation

Mass Balance Approaches

Altimetry: infer mass balance from elevation changes

Mass Balance Approaches

Gravity: infer mass balance from gravity changes

Mass Balance Approaches

 Flux Method: Assess net difference between mass input to mass output from observations and models of each component

Sub-Glacial Topography

Increasing Greenland Melt

~33% melt increase from 1979 to 2008

What happens to all that melt water?

11.

SSM/I 19 GHz Horizontal July 7th, 1995

Ice Sheet Melt Lakes

- Hundreds form in topographic basins within ablation zone
- Drain very rapidly
- Kilometers wide
- Meters deep

Meltwater Accelerates Ice Flow

Photo © Scott McGhee

Photo: R. Braithwaite © AAAS, Science, vol. 297, No. 5579

Meltwater Accelerates Ice Flow

So How Much is Greenland Contributing to Sea Level Rise?

... there was Krabill.

- First observationally-based ice sheet mass balance estimate: covers 1993/4-1998/9
- Growth in interior
- Thinning at margins
- Jakobshavn Thickening
- -46 GT mass balance

... And it was good

A man with one watch knows what time it is. A man with two watches is never sure.

The Antarctic Ice Sheet

- 60 m sea level equivalent (SLE)
- Temperatures well below freezing
- West Antarctic ice sheet (~3.3 m SLE) rests on a soft bed that is below sea level
- Unstable?

Antarctic
Surface
Temperature
trends:
1981-2007
(derived from
AVHRR)

Landsat Image Mosaic of Antarctica

Larsen B Break-up 2002

January 31

Ted Scambos, NSIDC

Larsen B Break-up 2002

March 17

10,000 years of ice gone in one month!

Ted Scambos, NSIDC

A Surprise in the Weddell Sea

Source: Joey Comiso, NASA GSFC

Annual Sea Ice Minimum Extent 1979-2008

A Major Challenge: Ice Thickness

Photo source: Fisheries and Oceans Canada

Thinning of Arctic Sea Ice

- 1-to-2 m thick ice thinned to <1m between 2003 and 2007 (Red Ovals)
- Most thick 3-to-5 m ice near Greenland is gone (Black Ovals)

Source: National Snow and Ice Data Center University of Colorado

Decrease in Arctic Sea Ice Area

Decrease in Arctic Sea Ice Thickness

Source: Ron Kwok, JPL

Southern Hemisphere Sea Ice Is Increasing

Source: Claire Parkinson NASA/GSFC

Other Recent Changes

- Amplified high latitude surface warming
 - Some Cooling in Antarctica
- Melting permafrost
- Earlier melt onset of Arctic sea ice
- Earlier lake- and river-ice break-up
- Earlier snow melt
- Ocean and atmospheric circulation changes

Future NASA Missions Focused on Ice

- Tier 1 (2010-2013)
 - ICESat-2
 - Laser altimetry
 - Deformation Ecosystem Structure and Dynamics of Ice (DESDynI)
 - InSAR and lidar combined system
- <u>Tier 2 (2013-2016)</u>
 - None
- <u>Tier 3 (2016-2020)</u>
 - Land Imaging Surface Topography
 - High rep-rate laser altimeter for land surfaces
 - GRACE-2

Deformation Ecosystem Structure and Dynamics of Ice DESDynI

- L-Band
 Interferometric
 Synthetic Aperture
 Radar to measure
 Earth deformation, ice motion, and ecosystem structure
- Laser altimetry system to measure ecosystem structure

Cryosat-2

Radar altimeter capable of high-resolution along-track measurements

Other Relevant Missions/Instruments

- Operation IceBridge: Airborne surveys of ice sheets and sea ice
- GRACE-2: Third Tier, should be sooner
- LIST: Third Tier, and probably later than we think
- Passive Microwave
- Visible imagers
- Hyperspectral
- International
- Etc

Changing the Way We Think

- Nearly instantaneous response of ice sheets to presentday forcings
- Dramatic acceleration of some of the fastest outlet glaciers in response to retreating ice
- Both Antarctica and Greenland are expected to lose mass in a warmer climate
- Summertime acceleration of large sections of Greenland in response to meltwater lubrication
- Rapid melting beneath floating ice tongues near grounding lines
- Active subglacial hydrologic network
- Increased melting of the Greenland ice sheet
- Detailed Mapping of entire Antarctic ice sheet

Changing the Way We Think

- Rapid collapses of large, thick, and old ice shelves
- Enhanced Arctic Warming
- Cooling over large parts of Antarctica in the last 20 years
- Formation and behavior of large scale Polynya in the Weddell Sea
- Decline of Arctic sea ice area, especially in summer
 - Significantly exceeds model predictions
- Increasingly younger and thinner ice cover in the Arctic
- Spatial character of Arctic sea ice thickness decline
- Increase in Antarctic ice area/extent

"Man must rise above the Earth - to the top of the atmosphere and beyond - for only thus will he fully understand the world in which he lives."

Socrates

